Efek Hipoglikemia Formula Herbal Antidiabetes Pada Tikus Diabetes Yang Diinduksi Alloxan

Lailatus Sarifah, Raodatul Jannah, Dewi Ratih Tirto Sari

Abstract


Penelitian ini bertujuan untuk menguji efek hipoglikemia formula herbal antidiabetes secara in vivo. Herbal yang digunakan dalam penelitian yaitu simplisia daun kencana wungu, kayu secang, kayu manis, dan daun jati cina, dengan formula rasio yang digunakan 5:2:2:1 (F5221) dan rasio 3:3:2:2 (F3322). Sebanyak 12 tikus betina strain wistar dikelompokkan menjadi empat kelompok dengan jumlah masing-masing kelompok 3 ekor tikus. Kelompok perlakuan antara lain tikus normal, tikus diabetes mellitus (DMT2), tikus DMT2+ F3322, dan tikus DMT2+F5221. Tikus model diabetes mellitus diinduksi dengan menginjeksikan 175 mg/Kg BB alloxan secara subkutan dan melakukan observasi kadar glukosa darah 3 – 6 hari setelah injeksi. Selanjutnya tikus model diabetes diberikan formula herbal F3322 dan F5221 2x sehari selama 14 hari, dan dilakukan pengamatan kadar glukosa darah untuk mengamati efek hipoglikemia serta berat badan. Hasil pengamatan menunjukkan injeksi alloxan 175 mg/kg BB pada tikus model strain wistar meningkatkan kadar glukosa darah hingga lebih dari 200 mg/dl. Pemberian formula herbal 2x sehari pada hari ketujuh setelah perlakuan menunjukkan penurunan berat badan yang berbeda nyata (p<0.05), demikian juga pada hari ke – 14 setelah perlakuan. Namun, pemberian formula herbal baik F3322 dan F5221 menormalkan kadar gula darah tikus model dari 415 – 445 mg/dl menjadi 155 – 157 mg/dl. Penurunan kadar glukosa pada tikus model disebabkan oleh kandungan daun kencana wungu, kayu secang, dan kayu manis yang memiliki efek hipoglikemia. Sedangkan daun jati cina berpotensi sebagai antidiabetes melalui efek hypolipidemia yang ditandai dengan penurunan berat badan tikus. Penelitian ini disimpulkan bahwa pemberian formula F5221 selama 2x sehari dalam 14 hari menurunkan kadar glukosa dan berat badan dan berpotensi sebagai kandidat obat herbal antidiabetes mellitus.


Keywords


Antidiabetes; Herbal formula; Hypoglycemic; In vivo

Full Text:

PDF

Article Metrics

Abstract view : 67 times | PDF view : 27 times

References


Adnan, Md., Jeon, B.-B., Chowdhury, Md.H.U., Oh, K.-K., Das, T., Chy, Md.N.U., Cho, D.-H., 2022. Network Pharmacology Study to Reveal the Potentiality of a Methanol Extract of Caesalpinia sappan L. Wood against Type-2 Diabetes Mellitus. Life 12, 277. https://doi.org/10.3390/life12020277

Agustin, A.T., Safitri, A., Fatchiyah, F., 2021. Java Red Rice (Oryza sativa L.) Nutritional Value and Anthocyanin Profiles and Its Potential Role as Antioxidant and Anti-Diabetic. Indones. J. Chem. 21, 968. https://doi.org/10.22146/ijc.64509

Alkhatib, A., Tsang, C., Tiss, A., Bahorun, T., Arefanian, H., Barake, R., Khadir, A., Tuomilehto, J., 2017. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management. Nutrients 9, 1310. https://doi.org/10.3390/nu9121310

Banda, M., Nyirenda, J., Muzandu, K., Sijumbila, G., Mudenda, S., 2018. Antihyperglycemic and Antihyperlipidemic Effects of Aqueous Extracts of Lannea edulis in Alloxan-Induced Diabetic Rats. Front. Pharmacol. 9, 1099. https://doi.org/10.3389/fphar.2018.01099

Banday, M.Z., Sameer, A.S., Nissar, S., 2020. Pathophysiology of diabetes: An overview. Avicenna J Med 10, 174–188. https://doi.org/10.4103/ajm.ajm_53_20

Bare, Y., Maulidi, A., Sari, D.R.T., Tiring, S.S.N.D., 2019a. Studi in Silico Prediksi Potensi 6-Gingerol sebagai inhibitor c-Jun N-terminal kinases (JNK). JJMS 1, 59–63. https://doi.org/10.36873/jjms.v1i2.211

Bare, Y., Sari, D.R.T., Rachmad, Y.T., Krisnamurti, G.C., Elizabeth, A., 2019b. In Silico Insight the Prediction of Chlorogenic Acid in Coffee through Cyclooxygenase-2 (COX2) Interaction. bio 7. https://doi.org/10.24252/bio.v7i2.9847

Emilda, E., 2018. EFEK SENYAWA BIOAKTIF KAYU MANIS Cinnamomum burmanii NEES EX.BL.) TERHADAP DIABETES MELITUS: KAJIAN PUSTAKA. IJPF 5, 246–252. https://doi.org/10.33096/jffi.v5i1.316

Fajarwati, I., Solihin, D.D., Wresdiyati, T., Batubara, I., 2023. Administration of alloxan and streptozotocin in Sprague Dawley rats and the challenges in producing diabetes model. IOP Conf. Ser.: Earth Environ. Sci. 1174, 012035. https://doi.org/10.1088/1755-1315/1174/1/012035

Fatchiyah, F., Safitri, A., Palis, C.N., Sari, D.R.T., Suyanto, E., Fajriani, S., Kurnianingsih, N., Nugraha, Y., Sitaresmi, T., Kusbiantoro, B., Ketudat-Cairns, J.R., 2023. Bioactive compound profile and their biological activities of endogenous black rice from Java and East Nusa Tenggara. CyTA - Journal of Food 21, 159–170. https://doi.org/10.1080/19476337.2023.2173306

Fatchiyah, F., Sari, D.R.T., Safitri, A., Cairns, J.R., 2020. Phytochemical Compound and Nutritional Value in Black Rice from Java Island, Indonesia. Systematic Reviews in Pharmacy 11.

Himanshu, D., Ali, W., Wamique, M., 2020. Type 2 diabetes mellitus: pathogenesis and genetic diagnosis. J Diabetes Metab Disord 19, 1959–1966. https://doi.org/10.1007/s40200-020-00641-x

Ighodaro, O.M., Adeosun, A.M., Akinloye, O.A., 2017. Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. Medicina 53, 365–374. https://doi.org/10.1016/j.medici.2018.02.001

Lenzen, S., 2008. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51, 216–226. https://doi.org/10.1007/s00125-007-0886-7

Ley, S.H., Hamdy, O., Mohan, V., Hu, F.B., 2014. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383, 1999–2007. https://doi.org/10.1016/S0140-6736(14)60613-9

Lucchesi, A.N., Cassettari, L.L., Spadella, C.T., 2015. Alloxan-Induced Diabetes Causes Morphological and Ultrastructural Changes in Rat Liver that Resemble the Natural History of Chronic Fatty Liver Disease in Humans. Journal of Diabetes Research 2015, 1–11. https://doi.org/10.1155/2015/494578

Medagama, A.B., 2015. The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials. Nutr J 14, 108. https://doi.org/10.1186/s12937-015-0098-9

Nabrdalik, K., Kwiendacz, H., Moos, J., Moos, Ł., Kulpa, J., Brzoza, Z., Stompór, T., Gumprecht, J., Lip, G.Y.H., 2023. Diabetic Peripheral Neuropathy is Associated With Diabetic Kidney Disease and Cardiovascular Disease: The Silesia Diabetes-Heart Project. Current Problems in Cardiology 48, 101726. https://doi.org/10.1016/j.cpcardiol.2023.101726

Ojo, O.A., Ibrahim, H.S., Rotimi, D.E., Ogunlakin, A.D., Ojo, A.B., 2023. Diabetes mellitus: From molecular mechanism to pathophysiology and pharmacology. Medicine in Novel Technology and Devices 19, 100247. https://doi.org/10.1016/j.medntd.2023.100247

Patel, D.K., Prasad, S.K., Kumar, R., Hemalatha, S., 2012. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2, 320–330. https://doi.org/10.1016/S2221-1691(12)60032-X

Przeor, M., 2022. Some Common Medicinal Plants with Antidiabetic Activity, Known and Available in Europe (A Mini-Review). Pharmaceuticals (Basel) 15, 65. https://doi.org/10.3390/ph15010065

Ramadan, B.K., Schaalan, M.F., Tolba, A.M., 2017. Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC Complement Altern Med 17, 37. https://doi.org/10.1186/s12906-016-1530-1

Roosdiana, A., Permata, F.S., Fitriani, R.I., Umam, K., Safitri, A., 2020. Ruellia tuberosa L. Extract Improves Histopathology and Lowers Malondialdehyde Levels and TNF Alpha Expression in the Kidney of Streptozotocin-Induced Diabetic Rats. Vet Med Int 2020, 8812758. https://doi.org/10.1155/2020/8812758

Rosmalena, R., Senlia, A.O., Muhammad, H., Artanti, N., Eldafira, E., Handayani, S.I., Lotulung, P.D., Hartati, S., Elya, B., Zulfa, A., Prasasty, V.D., 2022. Phytochemical, Antioxidant and Antidiabetic properties of Senna alexandrina Leaf Extract. RJPT 5835–5840. https://doi.org/10.52711/0974-360X.2022.00985

Safitri, A., Fatchiyah, F., Sari, D.R.T., Roosdiana, A., 2020. Phytochemical screening, in vitro anti-oxidant activity, and in silico anti-diabetic activity of aqueous extracts of Ruellia tuberosa L. J app pharm sci 10, 101–108. https://doi.org/10.7324/JAPS.2020.103013

Safitri, A., Sari, D.R.T., Fatchiyah, F., Roosdiana, A., 2021a. Modeling of Aqueous Root Extract Compounds of Ruellia tuberosa L. for Alpha-Glucosidase Inhibition Through in Silico Study. mss 25. https://doi.org/10.7454/mss.v25i1.1223

Safitri, A., Sari, D.R.T., Refsilangi, B., Roosdiana, A., Fatchiyah, F., 2021b. Histopathological Profiles of Rats (Rattus norvegicus) Induced with Streptozotocin and Treated with Aqueous Root Extracts of Ruellia tuberosa L. Veterinary Medicine International 2021, 1–9. https://doi.org/10.1155/2021/6938433

Sari, D.R.T., Azkiyah, S.Z., Pranoto, M., Bare, Y., Sarifah, L., 2023a. In silico Approach Revealed α-amylase Inhibitor of Sappanon Compounds From Caesalpinia sappan In Carbohydrate Metabolism. Journal Pharmasci (Journal of Pharmacy and Science) 8, 197–203.

Sari, D.R.T., Bare, Y., Pratiwi, M., 2023b. Potensi senyawa racemosinin sebagai inhibitor absorbsi kolesterol secara in silico. Seminar Nasional Program Studi Farmasi UNIPMA 1, 55–64.

Sari, D.R.T., Krisnamurti, G.C., Bare, Y., 2022a. Pemetaan Bioaktivitas Senyawa Metabolit Sekunder Pada Kayu Secang (Caesalpinia sappan) Secara In Silico. Journal Pharmasci (Journal of Pharmacy and Science) 7.

Sari, D.R.T., Lailiyah, F., Bare, Y., 2022b. Studi Komparasi Sappanon A dan Sappanon B terhadap Penambatan Protein Tyrosin Phospatase 1B. spibio 3, 48. https://doi.org/10.55241/spibio.v3i2.65

Sari, D.R.T., Paemanee, A., Roytrakul, S., Cairns, J.R.K., Safitri, A., Fatchiyah, F., 2021. Black rice cultivar from Java Island of Indonesia revealed genomic, proteomic, and anthocyanin nutritional value. Acta Biochim Pol. https://doi.org/10.18388/abp.2020_5386

Sari, D.R.T., Pranoto, M., Krisnamurti, G.C., 2023c. Siphonaxanthin, A Functional Sea Grape’s Carotenoid Revaled Cholesterol Synthesis Inhibition; in Silico Study. 1st International Conference on Agricultural, Nutraceutical, And Food Science (ICANFS) 2022 1, 156–161.

Sari, D.R.T., Safitri, A., Cairns, J.R.K., Fatchiyah, F., 2020. Virtual screening of black rice anthocyanins as antiobesity through inhibiting TLR4 and JNK pathway. Journal of Physics: Conference Series 1665, 012024.

Silva, M.L., Bernardo, M.A., Singh, J., de Mesquita, M.F., 2022. Cinnamon as a Complementary Therapeutic Approach for Dysglycemia and Dyslipidemia Control in Type 2 Diabetes Mellitus and Its Molecular Mechanism of Action: A Review. Nutrients 14, 2773. https://doi.org/10.3390/nu14132773

Wediasari, F., Nugroho, G.A., Fadhilah, Z., Elya, B., Setiawan, H., Mozef, T., 2020. Hypoglycemic Effect of a Combined Andrographis paniculata and Caesalpinia sappan Extract in Streptozocin-Induced Diabetic Rats. Advances in Pharmacological and Pharmaceutical Sciences 2020, 1–9. https://doi.org/10.1155/2020/8856129

Yokoyama, H., Araki, S., Kawai, K., Yamazaki, K., Tomonaga, O., Shirabe, S., Maegawa, H., 2018. Declining trends of diabetic nephropathy, retinopathy and neuropathy with improving diabetes care indicators in Japanese patients with type 2 and type 1 diabetes (JDDM 46). BMJ Open Diab Res Care 6, e000521. https://doi.org/10.1136/bmjdrc-2018-000521

Yuniarto, A., Sukandar, E.Y., Fidrianny, I., Setiawan, F., Ketut, I., 2018. Antiobesity, Antidiabetic and Antioxidant Activities of Senna (Senna alexandrina Mill.) and Pomegranate (Punica granatum L.) Leaves Extracts and Its Fractions. International Journal of Pharmaceutical and Phytopharmacological Research 8.




DOI: https://doi.org/10.23971/jpsp.v4i1.8010

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Lailatus Sarifah, Raodatul Jannah, Dewi Ratih Tirto Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Journal Management Address Map:


Jurnal Penelitian Sains dan Pendidikan,
ISSN 2775-6580 (online-electronics), 2776-7531 (print)
2021-2022 IAIN Palangka Raya